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The analytical form of the perturbation theory for the MC SCF method of Veillard and Clementi 
is presented. The appropriate second-order energy functional which takes into account the self- 
consistency requirements, leads to a set of coupled first-order perturbed equations determining the 
perturbed configuration coefficients and orbitals. The second-order energy formula derived from this 
functional can be given a clear physical interpretation. The present analytical approach is compared 
with the finite perturbation MC SCF scheme. 

The possibility of the approximate solution of the coupled MC SCF perturbation equations is 
also discussed and the so-called uncoupled procedures are devised. In the limit of the single determinant 
wave function the present formulae are shown to be equivalent to the appropriate Hartree-Fock per- 
turbation results. 

The differences between the one-configuration SCF and the MC SCF approach are illustrated by 
the calculation of the electric dipole polarizability of Hz in the CNDO/2 approximation. It is shown 
that the one-configuration SCF approaches cannot account for the correct asymptotic properties of the 
second-order energy for large internuclear distances. This feature of the SCF perturbation theories 
does not depend on the specific approximations of the CNDO/2 scheme and is corrected by using the 
MC SCF perturbation theory. 
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1. Introduction 

Until very recently most of the calculations of the second- and higher-order 
atomic and molecular properties were carried out within the one-electron approxi- 
mation. A variety of more or less sophisticated one-electron perturbation schemes, 
based on the zeroth-order self-consistent field (SCF) Hartree-Fock (HF) wave 
functions, has been devised [1-15]. The main attention has been given to the exact 
HF approach to the perturbation problem, resulting in the so-called coupled 
Hartree-Fock (CHF) perturbation theory [1-4, 8, 9, 14]. But even in this case the 
results, though sometimes quite encouraging [9, 14, 16-18], refer to the correla- 
tionless level. Since there is no definite relation between the exact (including 
correlation) and the CHF perturbed energies, the role of the corresponding corre- 
lation corrections cannot be easily predicted [19, 20]. A few calculations using 
explicitly correlated wave functions [21-24] do not provide any unambiguous 
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answer to this question and their systematic extension for many-electron systems 
does not seem to be feasible. The use of the Brueckner-Goldstone many-body 
perturbation theory [25-28] in the molecular perturbation calculations requires 
an enormous extension of the basis set [28, 29] and suffers from quite obvious 
limitations. Although this approach provides a systematic tool for the study of the 
correlation effects, the summation of diagrams usually involves some approximate 
techniques [27-29]. Moreover, some of recent finite basis set Brueckner-Goldstone 
[28, 29] calculations of the correlation corrections are in fact equivalent to a very 
limited and incomplete configuration interaction approach. 

The multi-configuration self-consistent field (MC SCF) method can be con- 
sidered as a natural extension of the traditional HF scheme [30-39]. It recovers 
quite a good portion of the correlation energy with a relatively small number of 
included configurations [40]. Some recent applications of the MC SCF method 
to the calculation of the atomic dipole polarizabilities have shown its unquestion- 
able usefulness [4t-43]. These MC SCF calculations were performed according 
to the so-called finite field perturbation technique and in principle should be 
equivalent to the self-consistent solution of the first-order perturbed MC SCF 
equations, i.e., to the coupled MC SCF theory. However, any finite field included 
in the Hamiltonian will usually change the symmetry of the unperturbed problem 
and this may affect the asymptotic properties of the computed energies [41]. Also 
the finite field perturbation techniques require a very high numerical accuracy of 
the calculations [24], much higher than that for the corresponding unperturbed 
problem. The resolution of' the perturbed equations according to the orders of an 
appropriate perturbation parameter allows to avoid at least some of the mentioned 
difficulties of the finite field approach. 

It is the aim of the present paper to derive the perturbation equations appro- 
priate for the MC SCF theory. Since the perturbation theory in the traditional HF 
method can be written down in both the finite field [9] and the analytic (CHF) [4] 
form, we aim to obtain the MC SCF equivalent of the CHF scheme of Stevens, 
Pitzer and Lipscomb [4]. 

The analytic form of the CHF method [4] provides a very convenient starting 
point for the discussion of several approximations [3, 4, 10-15, 44]. The contri- 
butions to the corresponding nth order perturbed energy can be given some physi- 
cal interpretation [14] hardly available in the finite field approach. We hope that 
to some extent these features of the analytic approach will be also valuable for the 
MC SCF perturbation theory. 

We shall confine our considerations to the closed-shell systems. Then, the 
MC SCF scheme of Gtementi and Veillard [34] seems to be the most appropriate 
for the derivation of the relevant perturbation equations. Since there is a close 
correspondence of the MC SCF equations of Clementi and Veillard [34] and those 
of the traditional HF theory [39, 45], a similar relation should hold for the per- 
turbation theories for these methods. As a consequence, our derivation of the 
MC SCF perturbation equations follows the technique used by Lipscomb [4, 16]. 
However, some attention is given to the variational formulation of the solution of 
the perturbation equationsu This provides a convenient computational framework 
for the calculation of the perturbed orbitals and energies. The derivations reported 
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in this paper are limited to the first-order perturbed equations and the second- 
order energy formula. The extension to higher orders of the perturbation theory is 
straightforward. 

2. Basic Definitions 

In order to avoid the unnecessary repetitions we shall completely follow the 
conventions and notation of Clementi and Veillard [34]. However, in the present 
case the total Hamiltonian of the 2n-electron closed shell system is given by 

where 54g (°) is the unperturbed Hamiltonian and the perturbation g4~ (*) is assumed 
to be a sum of one-electron operators 

2n 

~m= ~ ~")(k) (2) 
k = l  

Thus the total one-electron part of (1) can be written as 

2n 2n 

~(k) = ~ (~(°)(k) + ~/~(1)(k)). (3) 
k = l  k ~ l  

According to Clementi and Veillard the MC SCF wave function 

~=aoo~o0+ ~ ~ atu~b,, (4) 
t = l  u - n +  l 

corresponding to the Hamiltonian (1) will now depend on the perturbation ~(1) 
via both the linear parameters aoo, % and the MC SCF orbitals t, u. The pertur- 
bation-dependent average electronic energy is in this approximation given by [34J : 

E=a'~oaooEoo + ~, ~ at*a,,,Et,, 
t = l  u = n + l  

/ = 1  u - - n + l  t ' = l  u ' = n + l  

x [KtcS..,(1 - 6,c) + K..,6.,(17- 6.u,)] 

+ ~, ~" (a*oa,.+aooat*)K,. (5) 
t = l  u = n + l  

provided the following orthogonality conditions are satisfied 

a*oaoo + ~ ~ a,*a,.= l (6) 
t = l  u = n + l  

(ilj > =6,~ (7) 

with i, j denoting any of the t- or u-type MC SCF orbitals. 
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Assuming that the expansion of all the relevant quantities in terms of the per- 
turbation parameter 2 at ;1 close to zero, is valid, we get 

where (8e) refers to any orbital entering the determinants in (4). The expansions 
(8c)-(8e) lead to the following orthogonality conditions 

and 

resulting from the zeroth-, first-, and the second-order terms of Eq. (6)  and Eq. (7), 
respectively. Provided the conditions (6) and (7) are satisfied, Eq. (5) represents 
the total energy functional 

with the following expansion 

The extremization of J ( O )  with respect to aboJ, a!:), and ji'") leads to the unper- 
turbed MC SCF equations given by Clementi and Veillard [34] : 
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and 

Fl°)lt(°))= ~ Ol°']i (°)> 
i = 1  

FL°) lu(° '>  = 
/ = 1  

(14) 

where E (°) and 9~ °) represent the appropriate Lagrangian multipliers. The opera- 
tors FI °) and F} °) are those defined by Eqs. (19a) and (19b) of Ref, [34] but written 
down for the zeroth-order coefficients and orbitals. 

From now on we assume that the zeroth-order MC SCF equations have been 
exactly 1 solved. Under these conditions it can be easily shown that the first-order 
functional j(1) does not in fact depend on the first-order coefficients and the first- 
order orbitals. Thus J(1) is reduced to the first-order perturbed energy formula 

J(t)=E")=2 ~ P(°)(i)(i(°)lh(~)li(°) } (15) 
i = 1  

and does not provide any variation principle. For  the sake of convenience we 
introduced in Eq. (15) the notation proposed by Got~biewski and Nowak- 
Broctawik [39] 

= ~ I - A I  °) for i=t  (16) 
P(°)(i) [B~ °) for i=u 

where according to Eq. (9b) and (10b) of Ref. [16] 

A(O)= ~ ,~(o)*,,(o) (17a) 
t ~ tU ~tU 

u = n + l  

B(O)_ ~ ,,(o)%,(o) (17b) 
t = 1  

Equation (15) is quite obvious for the first-order perturbation theory [463 and 
closely resembles that found in the traditional HF scheme [4]. It simply confirms 
the statement known as the generalized Hellmann-Feynman theorem for the 
MC SCF wave functions [473. 

x By the exact solution we understand also any solution of the MC SCF equations obtained within 
the finite basis set approximation. In order to preserve the bounding properties of the higher-order 
functionals this basis set cannot be extended when considering the perturbed orbitals. Then, although 

j - t  

the function Z wilt be orthogonal to all the orbitals. 



162 M. Jaszufiski and A. J. Sadlej 

The second-order energy functional j(2) will depend in general on the first- 
order as well as on the second-order perturbed coefficients and orbitals. Collecting 
the appropriate terms of the expansion of the total functional, we obtain 

where 

j(e)=j(Z)[a(o~, uoo,-(2) atu(1), ~otu#2), 1i0)>, 1#2))] -~=~- f(2) a_ 1(2) ± r ( 2 ) . O a b  --~bb (18) 

j ( 2 ) _ T ( 2 ) v • ( I )  ,,(2) r7(1)a(2)] 
aa - -  J aa k~00~ wOO, ~ t u  ~ ~ u  A 

(,,7(2)*.( 0 ) _1_ n(1)*,7(1) _t_ ,~(0)*~(2)'~ ~;'(0) 
~k~O0 ~ooruo0 uOO~UO0 ~00]~00 

+ ~ ~ (al2)*a} °'+@)*a}1. )+a}°'*a~z))El °) 
t = l  u=n+ l  

t = l  u=n+ l  t ' ~ l  u ' ~ n + l  

(0) (0) x ( K . ,  a.,,, + K,,u.6.,)(1 - 6tt,a,,u.) 

kuO0 u t u  t u O 0  Utu ~ ~00 Utu ~ uOOUtu  
t = l  u=n+ l  

+ ,.,(1),-,(1 )* ~_ .~(0),~,(2)*~ fg(0) (19a)  
~ O 0 ' ~ t u  v ~ O O ~ t u  !*X  tu 

y(z)_7(z)r.O) (1) 1i(1))] 
ab - - a  ab LU00, a t u  

/,,~( 1 )*,~(0) -L a(0J*o(1)hF(1) 
kuO0 uO0 ~'~00 ~00)~00  

+ ~ ~ (rt(1)*t~(0) ~- gt(0)*rt(1),p( 1 ) 
~.~tu ~ t u  - -  ~ t u  --tu ] ~ t u  

t = l  u=n+ l  

+ 2 (,~(1)*n(O) 4- a(O)*n(1) ] 

t = l  u - - n + l  t ' = l  u ' = n + l  

X / k'(1)£ (t) .--tt, ~.., + Ku.,atc)( 1 - ~Stt,au.,) 

+ ~ ~ t-(')*-(°)±-(°)*oO)~-~(')-(°)*±a(°)a("%t~(l' (19b) 
'v~O0 ~'*tu ~ t ' * O 0  Utu - - w O O W t u  ! O0 tu / l ~ t u  

t = l  u = n + l  

J ( Z ) -  J ( b 2 ) [ ] i ( 1 ) ) ,  1i(2))] 
bb - -  

__ .q(O)*.(O)p(2) + ~ ~ .(O)*rt(O) j~(2) 
- -~00  uOOL'O0 ~ t u  ~ t u  ~ t u  

t = l  u = n + l  

~t. -t'u'v*-tt' ~..' K . . , a . , )  / ,  
t = l  u - - n + l  t~=l u '=n+ l  

x (1 - a . , a . . , )  

+ ~ ~ t~oo'"(°)*o(°)±a(°)a(°)%K(2)-tu - oo ,. , ,u (19c) 
t =  l u = n +  l 

In these formulae ~(o) ~ O )  ~7,(2) jr,(0) F(1)  /,."(2) • TT(0) r/-(1) • ( 2 ) c o r r e s p o n d  --,oo, ~oo ,  woo, - , , ,  - t , ,  - t , ,  an(l ~ , , ,  1,,,,, *~t, 
to the appropriate orders of the perturbation expansion of Eoo, Etu and Kt, ,  
respectively (see Eqs. (3) and (4) of Ref. [341). It is worth attention that these 
quantities do not involve the variation coefficients. It will be shown in the next 
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Section that assuming the knowledge of the exact solution of the unperturbed 
MC SCF problem and the orthogonality conditions (9c) and (10c) we can simplify 
the functional (18) to the form containing only the first-order perturbed coefficients 
and orbitals. One can also generally prove that the functional (18) including the 
second-order coefficients and orbitals, gives the exact upper bound to the second- 
order energy. 

3. The Second-Order MC SCF Perturbation Theory 

--(2) contain either a(o2o )* and al 2)* or their complex Collecting the terms ot J , ,  which 
conjugates and using both Eq. (13) and Eq. (9c) we obtain without any approxi- 
mation the following result 

j ( 2 )  _ 1(2)F~,(1) ,~(1)q 
a a  - -  ~ a a  L t ~ O 0  , ~ t u  _1 

- -  ry(1)*/~"(0) r(O),, ,~(1) _a_ ,-y(1)* ~ ~ gt(1)/('(0) 
- - ~ 0 0  \ J t ~ O 0 - - ~  1 ~ 0 0 "  ~ 0 0  ~ t u  " ~ t u  

t = l  u = n + l  

-I" r~(1) ft(1)* ~ I (0)  A- ct(1)*/F(O) - -  F(O)~ft  (1) 
t * O 0  ~ t u  ~ t u  - -  ~ t u  \ ~ t u  ~ , ' ~ t u  

t = l  u = n + l  t = l  u=nW1 

+ ~  ~ ~ ~ al~)*a},l),(KlO)5,,, (o) 1 + K,,,6,,)( -6,c5,,,) (20) 
t = l  u = n + l  t ' = l  u ' = n + l  

Thus, so far as the number of determinants in (4) is the same for both the per- 
turbed and the unperturbed problem, the second-order energy functional will not 
involve the second-order perturbed coefficients. 

It is also desirable to remove the second-order perturbed orbitals from the 
functional *'bb~(2). The procedure, although tedious, is still straightforward. How- 
ever, when dropping the terms containing [i(2)) o r  (i(2)] we must assume that the 
exact solution of the integro-differential equations (14) is known or that the 
second-order perturbed orbitals are determined in the same basis set as ]i (°)) and 
ti (1)) (see also Footnote 1). Accepting rather the last assumption, i.e., fixing the 
basis set, and using the orthogonality conditions (10c), we finally obtain 

j ( 2 )  _ 1 ( 2 ) r  [ ; ( 1 ) \ q  
bb  - - " b b  L[ ~ / d  

i = l  

+ /i(1)1~7(1)[i(o)\ .a_/;(o)1~7(1)1;(1)\ 
"x I i , b [  / ~ k ~  [ ~  i ,  b l  L / 

+ P(°)(i)((i(1)l~u)li(°) > + (i(o)l~(1)li(1))) ] (21) 
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where 

•7(1) _ _  

i,b-- 

(1 -Al°)) ~(1)+ 2 L (1 _AlO)_.~,A(o)~p(1),_c 
t ' = l  

9 A ( 0 ) n ( 1 )  + "~ i R(°)P(1) 
u = n + l  

i r/~(o)*,7(0) ,-,(o),~(o)*~_1 rd(1) O~,(O)*~,(O)D(1)q 
+ L \ ~ 0 0  ~ t u  A _ ~ O O ~ t u  ) 2 ~ u  _ _ z . t . t u  ~ t u  a u  d 

u = n + l  

+ L A}°)KI'~)( 1 - 6.,) for i= t 
( = i  

and 

t = l  

i Fi[,~(O), (0) _~_ ,~(O),n,(O)*'~ f((1) __ 9,q(O)*n(O)p(1)] 
+ L2kt~00 ~ t u  - - ~ O 0 ~ t u  J ~ t  - - ~ t u  ~Zu ~ t  A 

t = 1  

+ i --uu'--u'R (O)K(1)(1,- - 3,,,,) for i = u 
u ' = n + l  

(22) 

corresponds to the part of the first-order expansion of ~ i ,  which does not involve 
the first-order perturbed coefficients. The first-order perturbed operators appear- 
ing in (22) can be easily derived by the expansion of the appropriate formulae 
given in Ref. [-34]. The same applies to A} °) and B (°) - - u u "  • 

Passing from the functional (19c) to the functional (21) violates the exact 
bounding properties of (18). The functional in which the J~) part is replaced by (21) 
will give the second-order energy upper bound for a given zeroth-order MC SCF 
wave function. But even these bounding properties will be violated if the first- 
order perturbed orbitals do not refer to the basis set adopted for ]i(o)} [15, 48, 49]. 
In some cases this may result in a rather inconvenient restriction of the variation- 
perturbation approach. 

Before deriving the first-order perturbation equations it is useful to re-write 
the r(2) part of (18) in the form which explicitly shows the dependence on the J a b  

first-order perturbed orbitals 

j(2) ab 
i = 1  

-(o) ~(1) -(1) I ,,ol, > 
+ P(1)(i)(iw)[A(1)[i(°))] (23) 

where 

_ -AI 1' P('(i)-[ for i = t  
(24) 

for i=u 
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and 

n 

BL1)(&(0) + 2Pp) + z 2Pj0)) 
1 = 1  

n 

+ 2 [*(abyai:) + abOga$i) + a&a~:)* + ab$ai:)*)~:~) 
t =  1 

(1)' (0) (O)* (1) (0) 
- 2(41u at, +a,, at, )Pt 1 

m 

+ B;:?Kf)(l- 6,,,) for i= u 
u ' = n +  1 

(25) 

is the counterpart of BilJ but involving only the first-order perturbed coefficients. 
The variation of the total functional, expressed either as a sum of Eqs. (20), 

(19b) and (19c) or as a sum of Eqs. (20), (23) and (21) with respect to the first-order 
perturbed coefficients and the first-order perturbed orbitals, respectively, is con- 
strained by the orthgonality requirements (9b) and (lob). Including these con- 
straints via the appropriate Lagrangian multipliers and performing the variation 
of the relevant form of the functional, we obtain the first-order perturbed MC SCF 
equations : 
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for the first-order perturbed coefficients, and 

(0) .(1) (0) .(1) (gl°)-o,,)t, >- 2 > 
j ¢ i  

(1) .(0) =--(~ll)--Ol]))ti(O))q - ~ Oij [] ) (27) 
j ¢ i  

for the first-order perturbed orbitals. Both E (1) and 811) arise from the correspond- 
ing Lagrangian multipliers by a subsequent comparison with the formal expansion 
of Eqs. (29), (30), (22a) and (22b) of Clementi and Veillard [34]. The operator Yl t) 
is defined by 

~.~11) __ .@"(1) ~_ ~u~'-(1) (28) • - - _ _ i , a ~ i , b  

and represents the total first-order perturbed MC SCF one-electron operator. 
Before passing to the discussion of the first-order perturbed MC SCF equa- 

tions (26) and (27) let us assume that their solution minimizing the corresponding 
second-order energy functional, is known. The value of the functional calculated 
for these solutions becomes the second-order energy formula for the MC SCF 
scheme. Thus 

min j ( 2 ) = E ( 2 )  

= ~ [r(1)(i)(i(°)l~(1)li(°)) 
i : 1  

+ p(O)(i)((i(1)[~(1)li(o) ) + (i(o)[~(1)1 i(1)))] (29) 

and has a direct physical interpretation. The first term involving P(1)(i) represents 
the contribution to E (2) due to a change of the occupation numbers of the electron- 
pair levels. The other terms refer to the effect of the perturbation upon the orbitals. 
Both, P(1)(i) and [i (1)) are in fact coupled by the mutual dependence of the solu- 
tions of Eqs. (26) and (27). Moreover, the second-order energy formula (29) can 
be easily reduced to that for the one-determinantal form of (4). In this case 

and 

Thus 
h 

E(2) = E 
t=1 

p(X)(i)-O 

p(0)(i)={10 for i=t  
for i=u 

+ 

and one recognizes the well-known second-order energy formula of the CHF 
scheme [4, 16]. 
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It follows also that in the one-configuration approximation of 7/(°) both y}0) 
and .~I ~) become independent of t and can be written as if(o) and if(l), respect- 
ively. Moreover, if we assume that the unperturbed orbitals It (°)) were chosen in 
the so-called canonical form [50], the first-order perturbed orbital equation reads 

(~°)-O}o))[tc~)>= -(~<lt-O})))lt<°)> + ~ of~)lt'~°)> (30) 
t ' ~ t  

and is completely equivalent to that derived in the CHF perturbation theory 2. 
Thus, the reduction of Eq. (27) to the first-order perturbed CHF equation clearly 
shows that the present scheme is a natural extension of the ordinary HF perturba- 
tion theory. 

Apparently, the perturbation equations of this paper are confined to the closed- 
shell systems representable by the MC SCF wave function of the form (4). Their 
generalization for a more complete form of the MC SCF wave function [37, 51] 
is straightforward but requires a rather cumbersome notation. Except for in- 
creasing complexity, the use of more general functions does not raise any new 
formal or computational problems. It should also be pointed out that in the case 
of open-shell systems the present approach is equivalent to that of Diercksen and 
McWeeny [52]. 

4. Remarks on the Computational Scheme for the Solution of 
the First-Order Perturbed MC SCF Equations 

It is worth atter~tion that the perturbed MC SCF equations (26) and (27) are 
mutually coupled due to a simultaneous presence of both the pertur.bed coefficients 
a(1) ,¢1) and the perturbed orbitals ]i(1)). Hence, their solution will require some 

O 0  ~ ~ t u  

iterative approach which allows to treat them separately. 
The analysis of the relative importance of the perturbed coefficients and orbi- 

tals 3 leads to the conclusion that in the zeroth iteration one can assume 

a(1)_#~)=a 
O 0  - -  ~ t u  v 

and begin with the solution of Eq. (27) for the zeroth approximation to the first- 
order perturbed orbitals. These are substituted into Eq. (26) and lead to the next 
approximation for the perturbed coefficients. The iterations are repeated until the 
solutions become selfconsistent. 

Since the solution of Eq. (26) with already known perturbed orbitals l i (1)) is 
completely straightforward, we shall focus our attention on the first-order per- 
turbed orbital equations (27). For this purpose we shall assume that all the terms 

2 Since the components of It (l/) involving the occupied unperturbed orbitals do not contribute 
to the second-order CHF energy [4], one usually neglects the off-diagonal first-order Lagrangian multi- 
pliers g}tl, ). 

3 For instance, in a number of cases , ( 1 ) _ , m _ n  by symmetry. It is also known that the CHF ~ 0 0  - -  ~ t u  - -  ~ 

scheme accounts for a major portion of the second-order perturbed energies, indicating that the 
orbital perturbations are the most important ones. Thus the first term of Eq. (29) gives a rather small 
contribution and can be neglected in the zeroth approximation. 
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.~-(i) i.e., the terms involving the perturbed coefficients, are contributing to _~,, ,  
known. However, one finds that the corresponding equations are still coupled via 
the perturbation of the one-electron MC SCF potential. Since this potential is 
determined by all the unknown perturbed orbitals, the most convenient approach 
to the solution of Eqs. (27) will require another iterative scheme. 

It should be pointed out that in the ordinary CHF scheme both the iterative 
approach [14] and the method based on the direct solution of the set of linear 
equations [4, 18] (see also [53]) are currently in use. In principle both these 
methods can be also applied in the present case. However, because of the presence 
of the off-diagonal Lagrangian multipliers, the iterative approach seems to be 
more convenient. 

In order to define the iterative scheme for the solution of Eqs. (27) one has to 
choose the appropriate zeroth approximation for the perturbed orbitals contribut- 
ing to the r.h.s. In the CHF scheme this procedure is known as the uncoupling of 
the CHF equations [4, 14, 44] and quite frequently the uncoupled solution (zeroth 
approximation of the iterative scheme) is fairly close to the exact one [12, 44, 53, 
54]. The same idea seems to be applicable also in the case of the MC SCF perturbed 
orbital equations. 

Let us express the perturbation operator ~ I  ~) in the form 

• - -  - - - - i , a - - ~ i ,  bi ~ ~" i , b j  
j ¢ i  

(31) 

where ,~-lJ~i contains all the terms involving 1i(~)} and the other perturbed orbitals 
{j(1)}¢_ [io)} contribute to the last term of Eq. (31). P(°}(i) [39] is equal either 
1 -Al°)(i= t) or B(f)(i= u). The experience gained in the CHF calculations [4, 14, 
44] shows that a very convenient zeroth approximation is obtained by neglecting 
all the terms involving ]j(~)} ¢ [i(1)}. Applying the same idea in the present case 
we find that the uncoupled solutions for [i(~)} are determined by 

(.~-(o) (l(o)]li(1)} q_ ~ ( 1 )  i (o)\  
- -  i - - ~ i i  / I  i, bi ~ / 

= - - ( ~ ( 1 ) 4 - P ( ° ) ( i )  ~ ( 1 ) , , - i , a -  + 2 01J'lj(°'> (32) 

It should be noticed that Eq. (32) represents the MC SCF counterpart of the so- 
called UCHF Method b' of Langhoff, Karplus and Hurst [7]. However, in the 
present case the uncoupling of Eq. (27) involves also the neglect of the terms 
coupled through the off-diagonal Lagrangian multipliers .q(0) --ij - 

By analogy with the uncoupling procedures in the C HF scheme one can say 
that Eq. (32) contains the so-called self-coupling terms (W(1)~ [7]. Neglecting \ i ,  b i]  

them, we obtain the most approximate uncoupled MC SCF perturbation equa- 
tions of the form 

~ ( 0 )  (0) '(1) p(O~(i)A(~) Olt))li(O)>÷ ~ O~j {y > ( ~  _ o .  )l ~ > = _ ( g G ~ +  .~ .~o~ (33) 
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They can be considered as the MC SCF equivalent of the Dalgarno uncoupled 
scheme [-3, 7, 12]. 

Similarly as in the case of the CHF method one can devise a variety of the un- 
coupling procedures [7, 12] differing by the retained portion of the self-coupling 
terms. The corresponding orbital solutions can be used either as a subsequent 
approximation for the r.h.s, of Eq. (27) or as the final uncoupled MC SCF result. 
For any of these uncoupled schemes one can use the result of the next iterative 
solution of Eqs. (27) to compute the corresponding "first-order" [-55] correction 
to the uncoupled value of the second-order energy. A further improvement of the 
uncoupled second-order energies is possible by utilizing the so-called geometric 
approximation [-44, 56, 57, 58] derived from the corresponding variational prin- 
ciple [-57]. 

Usually in order to solve integro-differential equations like Eq. (32) or Eq. (33) 
the algebraic techniques are utilized [-4, 14]. Following the methods employed in 
the CHF scheme [-4, 14, 18] we shall assume that each ]¢1)) is expandable into a 
set of the unperturbed MC SCF orbitals 

[i(1)) = ~ c~jlj,o, ) + ~" cir[r(O,) (34) 
j¢: i  r = m + l  

where the second sum involves the so-called hypervirtual orbitals [39]. The set 
{l j(°)),  I r <°)) } is assumed to be orthonormal. With the expansion (34) the orthogo- 
nality conditions (10b) can be written as 

% + % = 0 (35) 

Thus 

% = 7- % (36) 

where the upper or lower sign refers to real or pure imaginary perturbation, 
respectively. It follows also that without loss of generality we can put 

cu=O (37) 

confirming the validity of the neglect of the corresponding term in Eq. (34). 
Substituting Eq. (34) into Eq. (32) and projecting the result onto (~(°)14; (i(°) I 

one finally obtains the following set of algebraic equations for the determination 
of the unknown expansion coefficients 

M 
c (o) o~(o) (o) (o) (o) (o) (o) (o) 

k'/-i 

+_ ( g(°)k(°)]i(°)i(°)) - (e(o)i(0)lk<O)¢O)))_010)f~k} 

= _ (#(o) _.~(a)~, o + p(o)(i)~(a)li<O) ) + ~ a(~)fu ij lj (32a) 
j ;a  i 

where 

< i~°~c°)lk~°)l~°~> = $ $ i(m*(1)j(°)*(2)r 1-2 ~ k(m(1)l~°)(2)dv 1dr2 

and M denotes the dimension of the basis set of the unperturbed MC SCF orbitals. 
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The same technique applied to Eq. (33) results in 
M 
E C,(//(O) ~(0) /~(0)\ q(O)x 

i K ' t k  ~ i "~ / - - t " i i  U l k ]  
k ~ : i  

=-<E(°)l.~l~)~+ P(°)(i)~(1)li(°) >+ ~, a(u6 . (33a) u i j  I j  
j ¢ : i  

and because of the orthogonality conditions (35) the solutions of Eqs. (32a) and 
(33a) will be expressed in terms of the Lagrangian multipliers a(1) Their elimina- ~ ' i j  • 

tion is achieved by the substitution into Eq. (35) and the use of their hermitean 
properties. The solution of the appropriate uncoupled equations provides the 
zeroth approximation for the iterative solution of Eq. (2"7) or can be used for the 
calculation of the second-order perturbed energy corresponding to a given un- 
coupled scheme. 

Apparently, the numerical realization of the present perturbation approach 
requires more computational effort than in the case of the CHF scheme. Even the 
solution of the uncoupled orbital equations is much more complicated, since the 
operators f f l  °) are not diagonal in the basis set utilized in the expansion (34). In 
principle one can use different basis sets for different perturbed orbitals, i.e., the 
basis sets which diagonalize a given ff l  °) operator. However, this will lead to a 
rather cumbersome form of the orthogonality conditions. 

The other point is concerned with the use of the hypervirtual orbitals. In 
principle we can employ any set of orbitals satisfying the appropriate orthogonality 
conditions. However, in order to maintain some,of the mentioned bounding 
properties of the MC SCF perturbation theory they should be confined to the sub- 
space which determines the MC SCF orbitals used in the construction of T(0). 

In comparison with the finite perturbation MC SCF approach [41-43] the 
analytical formulation offers the possibility of the study of several approximate 
techniques which are the counterparts of some successful uncoupled schemes 
devised for the one-configuration approximation. Also the numerical accuracy of 
the machine calculations does not have to be so high as in the finite perturbation 
approach [22]. Finally, the analytical form of the MC SCF perturbation theory 
has by definition proper asymptotic behaviour for the vanishing perturbation 
and will not lead to the splitting of the unperturbed state observed in the finite 
perturbation calculations [41]. 

The programming of the formulae derived in this paper is in progress and the 
corresponding ab initio results for the second-order atomic and molecular proper- 
ties related to the external electric and/or magnetic field perturbations will be 
published in future. Thus far the only numerical illustration is available for the 
CNDO/2 [59] approximation of the present theory. In view of the crudeness of 
the CNDO/2 approximation we shall focus our attention on the comparison of 
several perturbation techniques. 

5. A Comparison of the One- and Multiconfiguration SCF 
Perturbation Theories 

In order to illustrate the fundamental differences between the one- and multi- 
configuration approach let us consider the calculation of the electric dipole 
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polarizability of the hydrogen molecule. In the all-valence-electron CNDO/2 
approach the SCF and MC SCF wave functions will have the form [-60] 

'e(°) = [g(O)o(o) I 
SCF 

~'Mc(°' sc~ = a~o~ Ig'°'0'°'l + aq~lu'°'~'°' I (38) 

where 

g(°)=_2-1/Z(ls.+lsb) u(°)=2-1/2(lG--lSb) 
Because of the valence-shell approximation the perpendicular component of the 
molecular polarizability as well as the polarizability of the hydrogen atom are 
both equal to zero. Thus, the calculations will refer only to the parallel component 

tl" This can be identified with the polarizability anisotropy A~ = c~ II- c~± = a I1' 
According to the expansion technique (34) the first-order perturbed orbitals 

are given by 

g(1)=couu(°) , u(1)=Cuog(°)=--CouU(°) 

and using the standard CNDO/2 approximations for the one- and two-electron 
integrals [-59, 61] we obtain simple explicit expressions for c~[i. The following 
perturbation methods have been considered 

(1) the Dalgarno uncoupled SCF perturbation scheme I-3, 14], 

(2) the one-configuration CHF theory [4, 14, 62, 63], 

(3) the Dalgarno-type uncoupled MC SCF perturbation scheme (Eq. (33a)), 

(4) the coupled MC SCF perturbation method (Eq. (27), in the present case 
equivalent to Eq. (32a)), 

and the corresponding numerical data are shown in Table 1. 

Table 1. Results of the perturbation calculations of C~ll for 
the hydrogen molecule (in A 3) 

Method 

R Dalgarno Uncoupled Coupled 
(a.u.) UCHF CHF MC SCF MC SCF 

1.0 0.1267 0.2285 0.1333 0.2277 
1.4 0.2886 0.4567 0.3157 0.4171 
2.0 0.7654 0.9650 0.8816 0.6895 
3.0 2.729 2.285 2.975 0.5733 
4.0 7.348 4.130 6.109 0.1872 
5.0 16.03 6.373 9.824 0.0427 
6.0 29.76 8.951 14.21 0.0085 
7.0 49.14 11.86 19.39 0.0015 
8.0 74.76 15.13 25.29 0.0003 
9.0 107.4 18.77 32.01 0.0000 

10.0 147.8 22.79 39.51 0.0000 
15.0 500.1 48.79 88.91 0.0000 
20.0 1185.0 84.67 17.88 0.0000 
25.0 2315.0 130.4 0.0011 0.0000 
co co co 0 0 
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According to the data of Table 1 for the equilibrium internuclear distance 
R = 1.4 a.u. the coupled MC SCF scheme leads to a lowering of the CHF value 
of ~ll [62, 63]. Thus, the MC SCF value of the polarizability anisotropy becomes 
closer to the experimental one (0.314 A 3, [-64]). Although this result seems to be 
meaningful, we are not going to attach any specific importance to the correspond- 
ing numerical value. Far more important consequences of using the MC SCF per- 
turbation theory follow from the distance dependence of the computed polariza- 
bility anisotropy. 

For physical reasons the polarizability anisotropy of the hydrogen molecule 
should vanish at large R. However, in the case of the one-configuration approach 
the CNDO/2 results behave asymptotically like R 3 and become infinite for a pair 
of separated hydrogen atoms. On the other hand, both the uncoupled and the 
coupled MC SCF result vanish for infinite R. Thus, since the one-configuration 
approach fails to predict the correct dissociation limit also the CHF (or UCHF) 
perturbation theory cannot account for proper asymptotic properties of the 
polarizability anisotropy. These shortcomings of the single determinant approxi- 
mation are corrected when using the MC SCF perturbation theory. It is worth 
attention that the asymptotic behaviour of Ae does not depend on the semi- 
empirical form of the perturbation approach and will also be valid in the ab initio 
calculations. This follows from the fact that all the relevant CNDO/2 approxima- 
tions [59] are virtually correct for large internuclear separations. 

For R close to the equilibrium bond distance the results of different methods 
are qualitatively similar, Thus, the CHF calculations should be confined either to 
molecules with a proper SCF dissociation limit or to the geometries close to the 
equilibrium configuration. However, it follows from the data of Table 1 that the 
polarizability derivatives with respect to R may be quite different even for the 
eq/filibrium configuration. This brings some doubts about the usefulness of the 
corresponding CHF calculations [65]. 

Finally, a few words should be added in connection with the so-called con- 
figuration interaction (CI) perturbation theories [66]. First of all in the ordinary 
CI approach based on the HF orbitals the convergence of the perturbation pro- 
cedure will be rather slow. Some improvement can be gained in this respect by 
using the MC SCF 7 j(°) and the corresponding singly-excited configurations for 
7 m/. This form of the perturbation theory will be equivalent to the neglect of the 
terms of ~/,(21 bitinear in the first-order perturbed orbitals. Since these terms con- 
tributed to the second-order energy functional of the coupled MC SCF perturba- 
tion theory, the CI-type approaches cannot result in a complete optimization of 
the perturbed wave function. This resembles the features of the so-called single- 
excitation model [14, 15] in the one-configuration approximation. Moreover, the 
CI approach based on the MC SCF 7 '(°) can be considered as a natural extension 
of this model. 
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